http://ift.tt/hZ0OVi
A low-cost technology may make it possible to read long sequences of DNA far more quickly than current techniques.
The research advances a technology, called nanopore DNA sequencing. If perfected it could someday be used to create handheld devices capable of quickly identifying DNA sequences from tissue samples and the environment, the University of Washington researchers who developed and tested the approach said.
One reason why people are so excited about nanopore DNA sequencing is that the technology could possibly be used to create ‘tricorder’-like devices for detecting pathogens or diagnosing genetic disorders rapidly and on-the-spot,” said Andrew Laszlo, lead author and a graduate student in the laboratory of Jen Gundlach, a UW professor of physics who led the project.
Nature Biotechnology - Decoding long nanopore sequencing reads of natural DNA
Read more »

Reposted via Next Big Future
A low-cost technology may make it possible to read long sequences of DNA far more quickly than current techniques.
The research advances a technology, called nanopore DNA sequencing. If perfected it could someday be used to create handheld devices capable of quickly identifying DNA sequences from tissue samples and the environment, the University of Washington researchers who developed and tested the approach said.
One reason why people are so excited about nanopore DNA sequencing is that the technology could possibly be used to create ‘tricorder’-like devices for detecting pathogens or diagnosing genetic disorders rapidly and on-the-spot,” said Andrew Laszlo, lead author and a graduate student in the laboratory of Jen Gundlach, a UW professor of physics who led the project.
Nature Biotechnology - Decoding long nanopore sequencing reads of natural DNA
Read more »
Reposted via Next Big Future
No comments:
Post a Comment