http://ift.tt/hZ0OVi
David Akin of the University of Maryland has a 53 page presentation that looks at the economics of reusable rockets.
The primary cost drivers are refurbishment and mission operations costs. Refurbishment costs after each launch need to be ideally be kept below 3% of the vehicle cost but definitely at 6% or less for significant cost savings.
The flight rate and production rates have to be high to take advantage of the learning curve.
The 1954 airline industry was moving 5 million tons miles [? not sure if the 1954 number needs to be corrected as the 2003 number did] per year at about $80 per ton [ton mile].
The 2003 airline industry was moving 5 billion ton miles per year at about $20 per ton mile. [Akin number were incorrect]
US air industry statistics.
Right now the space industry is launching about 500-700 tons per year.
$500 billion to scale to 64 launches per day to the level of airlines in 1955
The US spends $60 billion per year on NASA, military and intelligence space programs. This means over $1.8 trillion over 30 years is what would be the expected budget. There is also the commercial space industry and international space efforts. The proposed $500 billion over 30 years would have to be carved out of the existing programs. The International Space station cost over $100 billion. The cumulative budget put into the space shuttle program was over $200 billion.
Strategically investing $500 billion (perhaps in conjunction with China, Europe, Japan and other countries) would provide high frequency reusable launches with demand like the airmail deliveries did for the airlines. It would be an investment in infrastructure like the highway system. The Earth and some orbit infrastructure is discussed but this level of effort would require orbital fuel depots and refueling and orbital and space industrialization.
The Space Review considered a program to fly to low earth orbit 64 times per day, three orders of magnitude higher than current flight rate, and evaluates its impact.
Ronald P. Menich wrote the Space Review article. Ronald worked in the Engineering Economics Group at SpaceWorks Engineering evaluating advanced ETO launch concepts for NASA and Air Force customers. He is Chief Scientist in the Pricing and Revenue Management business unit at JDA Software Group.
Read more »
Reposted via Next Big Future
David Akin of the University of Maryland has a 53 page presentation that looks at the economics of reusable rockets.
The primary cost drivers are refurbishment and mission operations costs. Refurbishment costs after each launch need to be ideally be kept below 3% of the vehicle cost but definitely at 6% or less for significant cost savings.
The flight rate and production rates have to be high to take advantage of the learning curve.
The 1954 airline industry was moving 5 million tons miles [? not sure if the 1954 number needs to be corrected as the 2003 number did] per year at about $80 per ton [ton mile].
The 2003 airline industry was moving 5 billion ton miles per year at about $20 per ton mile. [Akin number were incorrect]
US air industry statistics.
Right now the space industry is launching about 500-700 tons per year.
$500 billion to scale to 64 launches per day to the level of airlines in 1955
The US spends $60 billion per year on NASA, military and intelligence space programs. This means over $1.8 trillion over 30 years is what would be the expected budget. There is also the commercial space industry and international space efforts. The proposed $500 billion over 30 years would have to be carved out of the existing programs. The International Space station cost over $100 billion. The cumulative budget put into the space shuttle program was over $200 billion.
Strategically investing $500 billion (perhaps in conjunction with China, Europe, Japan and other countries) would provide high frequency reusable launches with demand like the airmail deliveries did for the airlines. It would be an investment in infrastructure like the highway system. The Earth and some orbit infrastructure is discussed but this level of effort would require orbital fuel depots and refueling and orbital and space industrialization.
The Space Review considered a program to fly to low earth orbit 64 times per day, three orders of magnitude higher than current flight rate, and evaluates its impact.
Ronald P. Menich wrote the Space Review article. Ronald worked in the Engineering Economics Group at SpaceWorks Engineering evaluating advanced ETO launch concepts for NASA and Air Force customers. He is Chief Scientist in the Pricing and Revenue Management business unit at JDA Software Group.
Read more »
Reposted via Next Big Future
No comments:
Post a Comment