Tuesday, November 18, 2014

Scientific Prospects for Curing Aging

http://ift.tt/hZ0OVi

Joao Pedro de Magalha looks at scientific prospects for curing aging in the Rejuvenation Research Journal.



Joao Pedro de Magalha does not consider the breakthroughs in gene and genome editing that are occurring with CRISPR.



His conclusion :

At the current rate of progress, radical life extension will take centuries. A revolution in medicine will be necessary to develop the combination of therapies necessary to stop human aging in this century. If information, analytic, and synthetic technologies continue to improve exponentially, our capacity to understand biological systems will eventually reach a turning point, in which case a scientific revolution will indeed occur.



CRISPR is the revolution to enable genome editing and the bio-information revolution is happening



CRISPRs (clustered regularly interspaced short palindromic repeats) are DNA loci containing short repetitions of base sequences. Editas Medicine, a $43 million startup, aims to develop treatments that employ CRISPR/Cas to make edits to single base pairs and larger stretches of DNA. Inherited diseases such as cystic fibrosis and sickle-cell anemia are caused by single base pair mutations; CRISPR/Cas technology has the potential to correct these errors.



The Journal Science discusses the gene editing revolution from CRISPR-Cas9



CRISPR is ten to one hundred time better and cheaper than older methods of gene editing



CRISPR-Cas9 offers several key benefits over competing endonuclease technologies. First, while mega-nucleases, ZFNs, and TALENs can be thought of as bespoke single-function machines, Cas9 is basically a programmable enzyme. All that is required is a construct expressing the generic Cas9 nuclease and a set of instructions in the form of a “single-guide RNA” (sgRNA) complementary to the desired target. The system is simple and inexpensive to implement and thus more attractive to researchers who might have been skittish of ZFNs and TALENs.



The second benefit is multiplexing. Since Cas9 is guided by its sgRNA, researchers can program it with multiple guide RNAs simultaneously. Feng Zhang and George Church, writing independently in Science, have both demonstrated the ability to target two sites simultaneously and Rudolf Jaenisch has targeted five.



Jaenisch found that 20 of 96 mouse embryonic stem cell clones tested using three sgRNAs simultaneously contained NHEJ-induced mutations at all six alleles of those three genes, a 20% success rate (5). Church observed HDR-mediated repair rates in human cells of 3% and 8% using two separate sgRNAs, compared to about 0.5% with a TALEN directed at the same location (4). That’s not to say CRISPR-Cas9 is perfect. Multiple studies have documented off-site targeting when using the system, for instance, at least in its original incarnation—something that could significantly limit potential clinical applications. Researchers have developed strategies to boost targeting specificity.






Read more »



Reposted via Next Big Future

No comments:

Post a Comment