http://ift.tt/hZ0OVi
MIT researchers have now developed a way to deliver the CRISPR genome repair components more efficiently than previously possible, and they also believe it may be safer for human use. In a study of mice, they found that they could correct the mutated gene that causes a rare liver disorder, in 6 percent of liver cells — enough to cure the mice of the disease, known as tyrosinemia.
“This finding really excites us because it makes us think that this is a gene repair system that could be used to treat a range of diseases — not just tyrosinemia but others as well,” says Daniel Anderson, associate professor in MIT’s Department of Chemical Engineering and a member of MIT’s Koch Institute for Integrative Cancer Research and Institute for Medical Engineering and Science (IMES).
High accuracy
With a combined nanoparticle and viral delivery method, about one in 16 cells had a gene corrected, a 15-fold improvement over the 2014 study. The researchers also found that this approach generated less off-target DNA cutting than methods in which the Cas9 gene is integrated into a cell’s genome.
Nature Biotechnology - Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo
Read more »
Reposted via Next Big Future
No comments:
Post a Comment