http://ift.tt/hZ0OVi
Scientists have been trying for years to make a practical lithium-ion battery anode out of silicon, which could store 10 times more energy per charge than today’s commercial anodes and make high-performance batteries a lot smaller and lighter. But two major problems have stood in the way: Silicon particles swell, crack and shatter during battery charging, and they react with the battery electrolyte to form a coating that saps their performance.
Now, a team from Stanford University and the Department of Energy’s SLAC National Accelerator Laboratory has come up with a possible solution: Wrap each and every silicon anode particle in a custom-fit cage made of graphene, a pure form of carbon that is the thinnest and strongest material known and a great conductor of electricity.
They describe a simple, three-step method for building microscopic graphene cages of just the right size: roomy enough to let the silicon particle expand as the battery charges, yet tight enough to hold all the pieces together when the particle falls apart, so it can continue to function at high capacity. The strong, flexible cages also block destructive chemical reactions with the electrolyte
When used in lithium-ion battery anodes, silicon microparticles swell, break apart and react with the battery’s electrolyte to form a thick coating that saps the anode's performance. To address these problems, scientists built a graphene cage around each particle, bottom. The cage gives the particle room to swell during charging, holds its pieces together when it breaks apart, controls the growth of the coating and preserves electrical conductivity and performance. (Y. Li et al., Nature Energy)
Time-lapse images from an electron microscope show a silicon microparticle expanding and cracking within its graphene cage as lithium ions rush in during battery charging. The cage is outlined in black, and the particle in red. (Y. Li et al., Nature Energy)
Nature Energy - Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes
Read more »
Reposted via Next Big Future
No comments:
Post a Comment