Sunday, April 30, 2017

Friday, April 28, 2017

Repost - The Barn / ZIEGLER Antonin architecte

Repost - CHICHI Office / Koyori + Atelier Salt

Repost - Canada will make dozens of small modular nuclear reactors

Reposted via Next Big Future

http://ift.tt/2otOxOn

Ontario Power Generation [OPG] plans to fill a predicted supply gap in the 2030s with new nuclear capacity and the utility is collaborating with Saskatchewan on the potential for a Pan-Canadian fleet of Small Modular Reactors, Nicolle Butcher, OPG’s Vice President of Strategy and Acquisitions, said.

OPG, the province’s largest power generator, replaced coal-fired generation with renewable energy, backstopped by gas-fired capacity and life extensions of 6.6 GW of large-scale nuclear capacity. The utility plans to close its 3.1 GW Pickering plant in 2024 and new carbon-free power capacity will be needed to ensure Ontario meets its objective of cutting greenhouse gas emissions by 37% below 1990 levels by 2030 and by 80% by 2050.

OPG forecasts a gap in its power generation portfolio in the 2030s and it intends to fill this gap with nuclear power, Butcher told the International SMR and Advanced Reactor Summit 2017 on March 30.

A number of advanced nuclear reactor developers are targeting the Canadian market, where the risk-informed regulatory framework is considered more supportive for licensing new designs than in the U.S. and where numerous remote communities and industrial facilities represent captive electricity consumers.

Ontario and New Brunswick are the only Canadian provinces to operate large-scale nuclear power plants but several Canadian provinces are seen as potential markets for either grid-size SMRs or Very Small Modular Reactors (VSMRs).

In October 2016, Ontario Power Generation started a US$9.6 billion refurbishment project at its 3.5 GW Darlington nuclear plant to extend the lifespan by 30 years. Bruce Power has also begun a US$10 billion life-extension project for its 6.3 GW nuclear plant northwest of Toronto.

The utility plans to close its 3 GW Pickering nuclear plant in 2024, so it needs new carbon-free power to ensure Ontario meets its 2030 goal to cut carbon emissions by 37% below 1990 levels, and its even more ambitious 2050 goal of being 80% below 1990 levels.

Saskatchewan is a key global uranium producer and is seen as a potential market for grid-size SMR deployment.

OPG and Saskatchewan’s main power utility Saskpower are examining the “potential to have the same reactor design and whether it fits into the system,” Butcher said.

“We would prefer not to have a unique reactor in our province as a single unit, we would like to have a fleet across the country,” she said.

Canada’s own new SMR company, Terrestrial Energy Inc. (TEI), has a new small modular Integral Molten Salt Reactor (IMSR) design that is ideal for this future, that is, a nuclear reactor that:

– is cheaper than coal and can last for decades longer
– is a 400 MWt (190 MWe) modular design, one able to be adapted to needs for both on and off-grid heat and power
– is small and modular enough to allow simple construction in under 4 years, and trucking of modules to the site
– operates at normal pressures, removing those safety issues, and at higher temperatures, providing more energy for the same amount of fuel
– it does not require water for cooling and has the type of passive safety systems that make it walk-away safe
– can load-follow rapidly to buffer the intermittency of renewables
– generates less waste that is also more easily managed

Terrestrial Energy’s reactor uses the natural convection of the molten salt to remove the heat to the vessel walls passively where its containment silo simply adsorbs the heat decay and conducts it away – this is passive cooling at its simplest.

SOURCES -Nuclear Energy Insider, Forbes – James Conca

Thursday, April 27, 2017

Repost - Photo

Reposted via F&O Forgotten Nobility

http://ift.tt/1iRSeAO

97F5228D1667852E97D03DD2AD65E7E2D2D16235AC81EB576DF87B10EE28909E6C14BB573F9661378CEEB5FB53C95F77

Wednesday, April 26, 2017

Tuesday, April 25, 2017

Repost - A drop

Reposted via F&O Forgotten Nobility

http://ift.tt/1iRSeAO


A drop

Repost - Elon Musk’s Neuralink goal is a cyborg whole brain mind computer interface with an AI cloud and other people

Reposted via Next Big Future

http://ift.tt/2otOxOn

There have never been more than a couple hundred electrodes in a human brain at once. When it comes to vision, that equals a super low-res image. The Neuralink team threw out the number “one million simultaneously recorded neurons” when talking about an interface that could really change the world.

Wait but Why got weeks of meetings and details from Elon Musk and the Neurlink team.

Elon wants to get a human computer interface closer to computer to computer interface speeds.

Until the 90s, electrodes for BMIs (Brain Machine Interfaces) were all made by hand.
We began to manufacture 100-electrode multielectrode arrays using conventional semiconductor technologies. Neuralink co-founder Ben Rapoport believes that “the move from hand manufacturing to Utah Array electrodes was the first hint that BMIs were entering a realm where Moore’s Law could become relevant.”

If we double our total every 18 months, like we do with computer transistors, we’ll get to a million in the year 2034.

Research suggests that the number of neurons we can simultaneously record seems to consistently double every 7.4 years. If that rate continues, it’ll take us till the end of this century to reach a million, and until 2225 to record every neuron in the brain

There’s the space issue. Where exactly are you gonna put your device that can interface with a million neurons in a skull that’s already dealing with making space for 100 billion neurons? A million electrodes using today’s multielectrode arrays would be the size of a baseball.

Best Brain machine interfaces and BMI projects

A group is working on a kind of nano-scale, electrode-lined neural mesh so tiny it can be injected into the brain with a syringe.

DARPA, the technology innovation arm of the US military, through their recently funded BRAIN program, is working on tiny, “closed-loop” neural implants that could replace medication.

A second DARPA project is aiming to fit a million electrodes into a device the size of two nickels stacked.

Another idea being worked on is transcranial magnetic stimulation (TMS), in which a magnetic coil outside the head can create electrical pulses inside the brain.

One of Neuralink’s co-founders, DJ Seo, led an effort to design an even cooler interface called “neural dust.” Neural dust refers to tiny, 100 micron size silicon sensors (about the same as the width of a hair) that would be sprinkled through the cortex. Right nearby, above the pia, would be a 3mm-sized device that could communicate with the dust sensors via ultrasound.

Others are working on even more out-there ideas, like optogenetics (where you inject a virus that attaches to a brain cell, causing it to thereafter be stimulated by light) or even using carbon nanotubes—a million of which could be bundled together and sent to the brain via the bloodstream.

Elon talks about some types of people early BMIs could help:

The first use of the technology will be to repair brain injuries as a result of stroke or cutting out a cancer lesion, where somebody’s fundamentally lost a certain cognitive element. It could help with people who are quadriplegics or paraplegics by providing a neural shunt from the motor cortex down to where the muscles are activated. It can help with people who, as they get older, have memory problems and can’t remember the names of their kids, through memory enhancement, which could allow them to function well to a much later time in life—the medically advantageous elements of this for dealing with mental disablement of one kind or another, which of course happens to all of us when we get old enough, are very significant.

Elon Musk thinks we are about 8 to 10 years away from this being usable by people with no disability … It is important to note that this depends heavily on regulatory approval timing and how well our devices work on people with disabilities.

Open AI is an effort to democratize the creation of AI, to get the entire Human Colossus working on it during its pioneer phase. Elon sums it up:

AI is definitely going to vastly surpass human abilities. To the degree that it is linked to human will, particularly the sum of a large number of humans, it would be an outcome that is desired by a large number of humans, because it would be a function of their will.

High bandwidth mind computer interfaces will give you cyborg superpowers and a window into the digital world. Your brain’s wizard hat electrode array is a new brain structure, joining your limbic system and cortex.

But your limbic system, cortex, and wizard hat are just the hardware systems. When you experience your limbic system, it’s not the physical system you’re interacting with—it’s the information flow within it. It’s the activity of the physical system that bubbles up in your consciousness, making you feel angry, scared, horny, or hungry.

Elon’s vision for the mind computer cyborg era is it serve as the interface between your brain and a cloud-based customized AI system. That AI system will feel like you.

Elon sees communication bandwidth as the key factor in determining our level of integration with AI, and he sees that level of integration as the key factor in how we’ll fare in the AI world of our future:

We’re going to have the choice of either being left behind and being effectively useless or like a pet—you know, like a house cat or something—or eventually figuring out some way to be symbiotic and merge with AI.

The pace of progress in this direction matters a lot. We don’t want to develop digital superintelligence too far before being able to do a merged brain-computer interface.

Elon said increasing bandwidth by orders of magnitude would make it better. And it’s directionally correct. Does it solve all problems? No. But is it directionally correct? Yes. If you’re going to go in some direction, well, why would you go in any direction other than this?

Monday, April 24, 2017

Repost - Horseshoe Crab Blood is a Medical Marvel – and It Could Be Endangering The Species

Reposted via adafruit industries blog

http://ift.tt/1E8EcEY

April 23, 2017 AT 3:00 am

Horseshoe Crab Blood is a Medical Marvel – and It Could Be Endangering The Species

NewImage

Popular Mechanics has a fascinating piece on Horsehoe crab blood and it’s use to biomedical companies.

Meghan Owings plucks a horseshoe crab out of a tank and bends its helmet-shaped shell in half to reveal a soft white membrane. Owings inserts a needle and draws a bit of blood. “See how blue it is,” she says, holding the syringe up to the light. It really is. The liquid shines cerulean in the tube.

When she’s done with the show and tell, Owings squirts the contents of the syringe back into the tank. I gasp. “That’s thousands of dollars!” I exclaim, and can’t help but think of the scene in Annie Hall when Woody Allen is trying cocaine for the first time and accidentally sneezes, blowing the coke everywhere.

I’m not crazy for my concern. The cost of crab blood has been quoted as high as $14,000 per quart.

Their distinctive blue blood is used to detect dangerous Gram-negative bacteria such as E. coli in injectable drugs such as insulin, implantable medical devices such as knee replacements, and hospital instruments such as scalpels and IVs. Components of this crab blood have a unique and invaluable talent for finding infection, and that has driven up an insatiable demand. Every year the medical testing industry catches a half-million horseshoe crabs to sample their blood.

But that demand cannot climb forever. There’s a growing concern among scientists that the biomedical industry’s bleeding of these crabs may be endangering a creature that’s been around since dinosaur days. There are currently no quotas on how many crabs one can bleed because biomedical laboratories drain only a third of the crab’s blood, then put them back into the water, alive. But no one really knows what happens to the crabs once they’re slipped back into the sea. Do they survive? Are they ever the same?

Scientists like Owings and Win Watson, who teaches animal neurobiology and physiology at the University of New Hampshire, are trying to get to the bottom of it. They’re worried about the toll on the creatures, from the amount of time crabs spend out of the water while in transit to the extreme temperatures they experience sitting on a hot boat deck or in a container in the back of a truck.

To that end, these two scientists are putting this strange catch to the test. The pair took 28 horseshoe crabs from the Great Bay Estuary behind their lab, left them out in the heat, then drove them around in a car for four hours and then left them in containers overnight to simulate what might happen in a bleeding facility. Then they bled half the crabs (so they’d have a control group that wasn’t bled). All of the crabs remained in containers a second night, as would likely happen at a bleeding lab. The following day, Owings and Watson put $350 transmitters on their backs, attached them snugly with little zip ties, and put the crabs back into the bay to see if they could make their way. What they find might have a lot to say about the future of this odd routine.

Read more.



Maker Business — Undercover in an iPhone Factory (video)

Wearables — Go with silicone

Electronics — Shift away from basic arithmetic

Biohacking — Recording and Biohacking a 100 Mile Run

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at

AdafruitDaily.com

!



No comments yet.


Leave a comment

Adafruit has a "be excellent to each other" comment policy. Help us keep the community here positive and helpful. Stick to the topic, be respectful of makers of all ages and skill levels. Be kind, and don't spam - Thank you!

Saturday, April 22, 2017

Repost - Transactions - Chris

Reposted via Sara Raines

http://ift.tt/1DKa0OE

Transactions - Chris Darmon

Repost - Day & Night by Owen

Reposted via Sara Raines

http://ift.tt/1DKa0OE

Day & Night by Owen Silverwood

Repost - Brook Power

Reposted via F&O Forgotten Nobility

http://ift.tt/1iRSeAO


Brook Power

Repost - Photo

Reposted via Man's Guilt

http://mansguilt.com/

45e1d44587-djke882-722929shyya0-dopwnn1

Repost - Photo

Reposted via Man's Guilt

http://mansguilt.com/


Repost - Tests for safe Geoengineering should start now

Reposted via Next Big Future

http://ift.tt/2aB80ot

Technology Review summarizes some of the arguments for and against geoengineering.

Alan Robock, a professor of environmental sciences at Rutgers, has published a list of 27 risks and concerns raised by the technology, including its potential to deplete the ozone layer and to decrease rainfall in Africa and Asia.

Ultimately, Robock worries that geoengineering may simply be too risky to ever try. “We don’t know what we don’t know,” he says. “Should we trust the only planet known to have intelligent life to this complicated technical system?”

Robock ignores the fact that the case for geoengineering is that the world is already being unintentionally geoengineered by the side effect of industrial and transportation emissions over a couple of centuries.

Harvard’s Schrag argued the opposite: that the scariest version of the future may be one where geoengineering is never developed or deployed. “I don’t think people understand just what we’re up against with climate,” he said. “The most likely scenarios for climate over longer time scales are devastating to future generations, absolutely devastating.”

As he flashed slides highlighting the dramatic loss of sea ice in the Arctic and Antarctic in recent months, Schrag stressed that climate change is already causing visible impacts faster than anyone expected. He added that it’s difficult to foresee any scenario where we can cut greenhouse-­gas levels fast enough to avoid far worse dangers: the amount we’ve already released is likely to lock in another degree of warming even if we halt emissions tomorrow, he said.

Mitchell was opposed to geoengineering for most of his career. The idea that humankind should tinker with the finely tuned climate system struck him as impossibly arrogant. But like other researchers who spent decades staring at increasingly frightening projections while the world ignored the loudest warnings scientists knew how to sound, he reluctantly changed his view.

It could take decades to learn which geoengineering methods might work, whether environmental side effects can be minimized, and whether it’s ultimately too dangerous to try. The longer we wait to begin serious research, the greater the risk we’ll deploy an unsafe tool in the face of sudden climate shocks, or not have one in hand when we need it. And no one really knows when that might be.

Says Mitchell, “The need for climate engineering could be coming faster than we realize.”

The cost to construct a Stratospheric Shield with a pumping capacity of 100,000 tons a year of sulfur dioxide would be roughly $24 million, including transportation and assembly. Annual operating costs would run approximately $10 million. The system would use only technologies and materials that already exist—although some improvements may be needed to existing atomizer technology in order to achieve wide sprays of nanometer-scale sulfur dioxide particles and to prevent the particles from coalescing into larger droplets. Even if these cost estimates are off by a factor of 10 (and we think that is unlikely), this work appears to remove cost as an obstacle to cooling an overheated planet by technological means.


HIGH-FLYING BLIMPS, based on existing protoypes, could support a hose no thicker than a fire hose (above) to carry sulfur dioxide as a clear liquid up to the stratosphere, where one or more nozzles (below) would atomize it into a fine mist of nanometer-scale aerosol particles.

The stratosphere is the weather-free portion of the atmosphere at altitudes between about 10 kilometers and 50 kilometers, or 33,000 to 165,000 feet.) The attractiveness of this approach stems largely from the fact that it happens naturally during large volcanic eruptions, such as the eruption of Mount Pinatubo in the Philippines in 1991. Intensive scientific study of the Pinatubo eruption showed that sulfur dioxide aerosols injected high in the atmosphere cooled the planet by reflecting more incoming sunlight back into space. An even larger eruption in 1815 of Mount Tambora in Indonesia led to the second-coldest
year in the northern hemisphere in four centuries, the “year without a summer”.

Preliminary modeling studies suggest that two million to five million metric tons of sulfur dioxide aerosols (carrying one million to 2.5 million tons of sulfur), injected into the stratosphere each year, would reverse global warming due to a doubling of CO₂, if the aerosol particles are sufficiently small and well dispersed. Two million tons may sound like a lot, but it equates to roughly 2% of the SO₂ that now rises into the atmosphere each year, about half of it from manmade
sources, and far less than the 20 million tons of sulfur dioxide released over the course of a few days by the 1991 eruption of Mount Pinatubo. Scientific studies published so far conclude that any increase in the acidity of rain and snow as several million additional tons a year of SO₂ precipitate out of the atmosphere would be minuscule and would not disrupt ecosystems.

A rough first-order estimate is that injection of as little as 200,000 metric tons a year of sulfur dioxide aerosol into the stratosphere above this region could offset warming within the Arctic.

Details

Although 100,000 tons a year sounds like a lot of liquid, when pumped continuously through a hose, that amounts to just 3.2 kilograms per second and, at a liquid SO₂ density of 1.46 grams per cubic centimeter, a mere 34 gallons (150 liters) per minute. A garden hose with a ¾-inch inner diameter can deliver liquid that fast.

It takes quite a bit of energy to lift material into the stratosphere: about 30 trillion Joules of potential energy, in fact, to lift 100,000 tons to a height of 30 kilometers. If the work is spread out over the course of a year, however, that energy translates to a required power of just 1,000 kilowatts. Inefficiencies and other practical considerations will increase this amount, possibly by several times; nonetheless, the power levels are not daunting by industrial standards.

To pump 34 gallons a minute up a 30-kilometer-long hose, the system must overcome both the gravitational head and the flow resistance. The gravitational head, which is simply another way of talking about the potential energy considered previously, would amount to a pressure of 4,300 bar (62,000 p.s.i.) if the liquid has a constant density of 1.46 g/cm³—not taking into account the small attenuation in the strength of gravity with increasing altitude.

Repost - #AP17-907A new geometric design every day

Repost - #AP17-907A new geometric design every day

Thursday, April 20, 2017

Repost - trans-girl-waiting: omgdean: To all the relatives, “friends”,...

Reposted via Alright, then, I'll go to hell.

http://ift.tt/1ezkeJe






trans-girl-waiting:

omgdean:

To all the relatives, “friends”, and random ass strangers who’ve been telling me since I was 16 that being 6′3″ made me too tall to wear dresses or find a guy willing to date a girl taller than him: My 5′2″ girlfriend loves when I wear dresses, thank you very much. 

THIS IS THE CUTEST

Repost - Just curious,why do you draw gay stuff,if you are straight?

Repost - Asvirus 38, Derek Le

Reposted via Sara Raines

http://ift.tt/1DKa0OE

Asvirus 38, Derek Lerner. Pen and Ink, 2013. http://ift.tt/2pGBBod

Repost - Brute force layout g

Reposted via Sara Raines

http://ift.tt/1DKa0OE

Brute force layout generation made with Processing. by Fabio Franchino.

Repost - . |Pinned from PinTo

Reposted via Sara Raines

http://ift.tt/1DKa0OE

. |Pinned from PinTo for iPad|