Monday, March 17, 2014

Superconducting Breakthrough Critical Current Density ten times higher - High Temperature Superconductor Grain Boundary limits to high Critical Current can be Practically Overcome

http://ift.tt/hZ0OVi

MagLab researchers have invented a groundbreaking new way to process Bi-2212 — one that makes it far more useful for building high-powered magnets including very high-field NMR magnets, a Muon Accelerator at Fermilab or a new upgrade for the powerful Large Hadron Collider at CERN.



Bi-2212 is a complex high-temperature superconducting material made of bismuth, strontium, calcium, copper, and oxygen that is well known to superconduct (or transmit electricity without loss) at super-cold temperatures up to 90 degrees Kelvin (or negative 183 degrees Celsius).



Since most superconductors are used to make magnets, what matters even more than the temperature at which they become superconducting, is the density of supercurrent (supercurrent flows without resistance and thus generates no heat or electrical loss) that can flow though wires made of the material.



Magnet engineers were previously using a form of bisco constructed in a superconducting ribbon processed in a very complex way to minimize the grain boundary density and raise the supercurrent density.



Now, by employing the MagLab’s new, pioneering process, they can make Bi-2212 into round wires. Put another way, engineers were previously limited to wide “fettuccini” ribbons to build magnets, but now can choose skinny “spaghetti” wires. Magnet builders much prefer “spaghetti” to “fettuccine” because high-current cables and complex winding shapes are much more feasible with round than with flat wires.



“This is the first time that any high-temperature superconductor has been made in the form that is the most useful for creating high-field magnets — a form that is round, multifilament, twisted and capable of being made in multiple architectures and sizes — without giving up the high-current density that is needed for making powerful magnets,” said David Larbalestier, the director of the Applied Superconductivity Center and the lead investigator on the journal article. “For the very long lengths that are needed for magnet coils — hundreds of meters to kilometers in length — we have figured out a way to increase the critical current density by almost a factor of 10.”




Magnet coil made with Bi-2212 wire using the new process.



Isotropic round-wire multifilament cuprate superconductor for generation of magnetic fields above 30 Tesla



Read more »



Reposted via Next Big Future

No comments:

Post a Comment