Friday, August 14, 2015

Magnetic field 100 times strongest magnets made with lasers and Superfluid gas

http://ift.tt/hZ0OVi
MIT physicists have created a superfluid gas, the so-called Bose-Einstein condensate, for the first time in an extremely high magnetic field. The magnetic field is a synthetic magnetic field, generated using laser beams, and is 100 times stronger than that of the world’s strongest magnets. Within this magnetic field, the researchers could keep a gas superfluid for a tenth of a second — just long enough for the team to observe it.

After cooling the atoms, the researchers used a set of lasers to create a crystalline array of atoms, or optical lattice. The electric field of the laser beams creates what’s known as a periodic potential landscape, similar to an egg carton, which mimics the regular arrangement of particles in real crystalline materials.

When charged particles are exposed to magnetic fields, their trajectories are bent into circular orbits, causing them to loop around and around. The higher the magnetic field, the tighter a particle’s orbit becomes. However, to confine electrons to the microscopic scale of a crystalline material, a magnetic field 100 times stronger than that of the strongest magnets in the world would be required.

The group asked whether this could be done with ultracold atoms in an optical lattice. Since the ultracold atoms are not charged, as electrons are, but are instead neutral particles, their trajectories are normally unaffected by magnetic fields.

Instead, the MIT group came up with a technique to generate a synthetic, ultrahigh magnetic field, using laser beams to push atoms around in tiny orbits, similar to the orbits of electrons under a real magnetic field. In 2013, Ketterle and his colleagues demonstrated the technique, along with other researchers in Germany, which uses a tilt of the optical lattice and two additional laser beams to control the motion of the atoms. On a flat lattice, atoms can easily move around from site to site. However, in a tilted lattice, the atoms would have to work against gravity. In this scenario, atoms could only move with the help of laser beams.


Observation of Bose–Einstein condensation in the Harper–Hofstadter model.

Nature Physics - Observation of Bose–Einstein condensation in a strong synthetic magnetic field

Read more »

Reposted via Next Big Future

No comments:

Post a Comment