Sunday, February 28, 2016

Graphene 'moth eyes' to power future smart technologies

http://ift.tt/hZ0OVi
New ultra-thin, patterned graphene sheets will be essential in designing future technologies such as 'smart wallpaper' and Internet-of-things applications


  • New ultra-thin, patterned graphene sheets will be essential in designing future technologies such as 'smart wallpaper' and internet-of-things applications
  • Advanced Technology Institute uses moth-inspired ultrathin graphene sheets to capture light for use in energy production and to power smart sensors
  • Graphene is traditionally an excellent electronic material, but is inefficient for optical applications, absorbs only 2.3% of the light incident on it. A new technique enhances light absorption by 90%.

New research published today in Science Advances has shown how graphene can be manipulated to create the most light-absorbent material for its weight, to date. This nanometre-thin material will enable future applications such as 'smart wallpaper' that could generate electricity from waste light or heat, and power a host of applications within the growing 'internet of things'.

Using a technique known as nanotexturing, which involves growing graphene around a textured metallic surface, researchers from the University of Surrey's Advanced Technology Institute took inspiration from nature to create ultra-thin graphene sheets designed to more effectively capture light. Just one atom thick, graphene is very strong but traditionally inefficient at light absorption. To combat this, the team used the nano-patterning to localise light into the narrow spaces between the textured surface, enhancing the amount of light absorbed by the material by about 90%.
Solar cells operate by absorbing light first, then converting it into electricity. The most efficient cells needs to do this absorption within a very narrow region of the solar cell material. The narrower this region, the better the cell efficiency. The ability to strongly absorb light by these structures could pave the roadmap to higher cell efficiencies. CREDIT University of Surrey

Scientific Advances - Ultra-broadband light trapping using nanotextured decoupled graphene multilayers

Read more »

Reposted via Next Big Future

No comments:

Post a Comment